نگاهی بر داده کاوی و کشف قوانین وابستگی
- پس از پرداخت لينک دانلود هم نمايش داده مي شود هم به ايميل شما ارسال مي گردد.
- ايميل را بدون www وارد کنيد و در صورت نداشتن ايميل اين قسمت را خالي بگذاريد.
- در صورت هر گونه مشگل در پروسه خريد ميتوانيد با پشتيباني تماس بگيريد.
- براي پرداخت آنلاين بايد رمز دوم خود را از عابربانك دريافت كنيد.
- راهنماي پرداخت آنلاين
- قيمت :29,000 ریال
- فرمت :Word
- ديدگاه :
نگاهی بر داده کاوی و کشف قوانین وابستگی
(۲۲صفحه ورد)
با افزايش سيستمهاي كامپيوتر و گسترش تكنولوژي اطلاعات , بحث اصلي در علم كامپيوتر از چگونگي جمع آوري اطلاعات به نحوه استفاده از اطلاعات منتقل شده است . سيستمهاي داده كاوي ,اين امكان را به كاربر مي دهند كه بتواند انبوه داده هاي جمع آوري شده را تفسير كنند و دانش نهفته در آن را استخراج نمايند .
داده كاوي به هر نوع كشف دانش و يا الگوي پنهان در پايگاه داده ها اطلاق مي شود . امروزه داده کاوی به عنوان یکی از مهمترین مسائل هوش مصنوعی و پایگاه داده ، محققان بسیاری را به خود جذب کرده است . در این تحقیق ابتدا نگاه کلی بر داده کاوی ، استراتژیهای داده کاوی و… داریم ، سپس مسأله کشف قوانین وابستگی در پایگاه داده را به تفضیل بررسی کردیم و نگاهی به الگوریتمهای موجود برای آن داشتیم . سپس مسأله کشف قوانین وابستگی در پایگاه داده های پویا را مورد بحث قرار دادیم و الگوریتم های ارائه شده مربوطه را مطرح کردیم .
Data mining(داده كاوي)
تعريف :
Data Mining represents a process developed to examine large amounts of
data routinely collected. The term also refers to a collection of tools used to
perform the process. Data mining is used in most areas where data are
collected-marketing, health, communications, etc.
داده كاوي فرآيند بكارگيري يك يا چند تكنيك آموزش كامپيوتر، براي تحليل و استخراج داده هاي يك پايگاه داده مي باشد.در واقع هدف داده كاوي يافتن الگوهايي در داده هاست.
دانش كسب شده از فرآيند داده كاوي بصورت مدل يا تعميمي از داده ها نشان داده مي شود.
چندين روش داده كاوي وجود دارد با اين وجود همه روشها “ آموزش بر مبناي استنتاج “ را بكار مي برند.
آموزش بر مبناي استنتاج، فرآيند شكل گيري تعاريف مفهوم عمومي از طريق مشاهده مثالهاي خاص از مفاهيمي كه آموزش داده شده اند، است.
مثال زير نمونه اي از دانش بدست امده از طريق فرايند اموزش بر مبناي استنتاج است:
آيا تا كنون فكر كرده ايد، فروشگاههاي بزرگ اينترنتي در mail هاي خود به مشتريان از چه تبليغاتي استفاده مي كنند؟ و آيا اين تبليغات براي همه مشتريان يكسان است؟
پاسخ اين است كه از روي دانش كسب شده از اطلاعات خريد افراد و نتيجه گيري از اين دانش، اين كار را انجام مي دهند.مثلا در نظر بگيريد يك قانون در پايگاه داده بصورت زير استخراج مي شود:
دقت = ۸۰% : سيگار مي خرند ^ نان مي خرند كساني كه شير مي خرند
از روي اين قانون فروشگاه مي تواند به تمام كساني كه شير مي خرند تبليغات سيگار و انواع نان را نيز بفرستد.همچنين اين قانون در چيدن قفسه هاي فروشگاه نيز بي تاثير نخواهد بود.
{شير و نان و سيگار در قفسه هاي كنار هم چيده شوند}
كشف دانش در پايگاه داده ۱
KDD يا كشف دانش در پايگاه داده اصطلاحي است كه مكررا بجاي داده كاوي بكار مي رود. از نظر تكنيكي، KDD كاربردي از روشهاي علمي داده كاوي است.
بعلاوه براي انجام داده كاوي فرايند KDD شامل :
۱– يك روش براي تهيه داده ها و استخراج داده ها ،
۲– تصميم گيري درباره عملي كه پس از داده كاوي بايد انجام شود ، مي باشد.
۱.Khowledge Discovery in DB (KDD)………………………………
……………………………………