ارائه یک مدل مبتنی بر خصیصه جهت تحلیل احساس موجود در نوشتجات
- پس از پرداخت لينک دانلود هم نمايش داده مي شود هم به ايميل شما ارسال مي گردد.
- ايميل را بدون www وارد کنيد و در صورت نداشتن ايميل اين قسمت را خالي بگذاريد.
- در صورت هر گونه مشگل در پروسه خريد ميتوانيد با پشتيباني تماس بگيريد.
- براي پرداخت آنلاين بايد رمز دوم خود را از عابربانك دريافت كنيد.
- راهنماي پرداخت آنلاين
- قيمت :390,000 ریال
- فرمت :Word
- ديدگاه :
دانلود پروپوزال آماده: ارائه یک مدل مبتنی بر خصیصه جهت تحلیل احساس موجود در نوشتجات
فرم پروپوزال پر شده و تکمیل شده نیمه رایگان کارشناسی ارشد و دکتری آماده برای انجام پایان نامه و درس روش تحقیق برای رشته های مختلف
مهندسی کامپیوتر(نرم افزار)
قسمت هایی از پروپوزال:
۱- بیان مسأله:
برخی نویسندگان داده کاوی را به عنوان ابزاری برای جستجو کردن اطلاعات سودمند در حجم زیادی از داده ها تعریف می کنند. برای انجام فرایند داده کاوی با زمینه های گوناگون تحقیقی مواجه میشویم، مانند پایگاه داده، یادگیری ماشین و آمار. پایگاه دادهها برای تحلیل کردن حجم زیادی از دادهها ضروری هستند. یادگیری ماشین، یک ناحیه هوش مصنوعی است که با ایجاد تکنیکهایی امکان یادگیری به وسیله تحلیل مجموعههای دادهای را به کامپیوترها میدهند. تمرکز این روشها روی داده سمبولیک است و با آنالیز دادههای تجربی سر و کار دارد. پایه آن تئوری آماری است. در این تئوری عدم قطعیت و شانس به وسیله تئوری احتمال مدل میشوند. امروزه بسیاری از روشهای آماری در زمینه داده کاوی استفاده میشوند. میتوان گفت که متن کاوی از تکنیکهای بازیابی اطلاعات، استخراج اطلاعات همچنین پردازش کردن زبان طبیعی استفاده میکند و آنها را به الگوریتمها و متدهای داده کاوی، یادگیری ماشین و آماری مرتبط میکند. با توجه به ناحیههای تحقیق گوناگون، بر هر یک از آنها میتوان تعاریف مختلفی از متن کاوی در نظر گرفت در ادامه برخی از این تعاریف بیان میشوند:
متن کاوی = استخراج اطلاعات: در این تعریف متن کاوی متناظر با استخراج اطلاعات در نظر گرفته میشود (استخراج واقعیتها از متن).
متن کاوی = کشف داده متنی: متن کاوی را میتوان به عنوان متدها و الگوریتمهایی از فیلدهای یادگیری ماشین و آماری برای متنها با هدف پیدا کردن الگوهای مفید در نظر گرفت. برای این هدف پیش پردازش کردن متون ضروری است. در بسیاری از روشها، متدهای استخراج اطلاعات، پردازش کردن زبان طبیعی یا برخی پیش پردازشهای ساده برای استخراج داده از متون استفاده میشود، سپس میتوان الگوریتمهای داده کاوی را بر روی دادههای استخراج شده اعمال کرد.
متن کاوی = فرایند استخراج دانش: که در بخش قبلی به طور کامل توضیح داده شده است و در اینجا دیگر بیان نمیشود. در این تحقیق ما بیشتر متن کاوی را به عنوان کشف داده متنی در نظر میگیریم و بیشتر بر روی روشهای استخراج الگوهای مفید از متن برای دستهبندی مجموعه های متنی یا استخراج اطلاعات مفید، تمرکز میکنیم.
در دنياي کنوني مشکل کمبود اطلاعات نيست، بلکه مشکل کمبود دانشي است که از اين اطلاعات مي توان بدست آورد. ميليونها صفحه ي وب، ميليونها کلمه در کتابخانههاي ديجيتال و هزاران صفحه اطلاعات در هر شرکت، تنها چند دست از اين منابع اطلاعاتي هستند. اما نميتوان به طور مشخص منبعي از دانش را در اين بين معرفي کرد. دانش خلاصهي اطلاعات است و نيز نتيجه گيري و حاصل فکر و تحليل بر روي اطلاعات.
داده کاوي، يک روش بسيار کارا براي کشف اطلاعات از دادههاي ساختيافتهاي که در جداول نگهداري ميشوند، است. داده کاوي، الگوها را از تراکنشها، استخراج ميکند، داده را گروهبندي ميکند و نيز آنرا دستهبندي ميکند. بوسيلهي داده کاوي ميتوانيم به روابط ميان اقلام دادهاي که پایگاه داده را پر کردهاند، پي ببريم. در عين حال ما با داده کاوي مشکلي داريم و آن عدم وجود عاميت در کاربرد آن است. بيشتر دانش ما اگر به صورت غير ديجيتال نباشند، کاملاً غير ساختيافته اند. کتابخانههاي ديجيتال، اخبار، کتابهاي الکترونيکي، بسياري از مدارک مالي، مقالات علمي و تقريباً هر چيزي که شما ميتوانيد در داخل وب بيابيد، ساختيافته نيستند. در نتيجه ما نميتوانيم آموزههاي داده کاوي را در مورد آنها به طور مستقيم استفاده کنيم. با اين حال، سه روش اساسي در مواجهه با اين حجم وسيع از اطلاعات غير ساختيافته وجود دارد که عبارتند از: بازيابي اطلاعات، استخراج اطلاعات و پردازش زبان طبیعی.
بازیابی اطلاعات: اصولاً مرتبط است با بازيابي مستندات و مدارک. کار معمول دربازیابی اطلاعات اين است که با توجه به نياز مطرح شده از سوي کاربر، مرتبط ترين متون و مستندات و يا در واقع بقچهي کلمه را ازميان ديگر مستندات يک مجموعه بيرون بکشد. اين يافتن دانش نيست بلکه تنها آن بقچهاي از کلمات را که به نظرش مرتبطتر به نياز اطلاعاتي جستجوگر است را به او تحويل ميدهد. اين روش به واقع دانش و حتي اطلاعاتي را برايمان به ارمغان نميآورد.
پردازش زبان طبیعی: هدف کلی پردازش زبان طبیعی رسیدن به یک درک بهتر از زبان طبیعی توسط کامپیوترهاست. تکنیکهای مستحکم و سادهای برای پردازش کردن سریع متن به کار میروند. همچنین از تکنیکهای آنالیز زبان شناسی نیز برای پردازش کردن متن استفاده میشود.
……………………………
۲- اهمیت و ضرورت تحقیق:
……………………………
۳- پیشینه تحقیق:
……………………………
۴- اهداف تحقیق:
…………………………………….
…………………………………..
۵- فرضيه هاي تحقیق:
…………………………………….
…………………………………..
۶- مدل تحقیق
…………………………
……………………………..
۷- سوالات تحقیق:
…………………………………….
…………………………………..
۸- تعريف واژهها و اصطلاحات فني و تخصصی (به صورت مفهومی و عملیاتی):
…………………………………….
…………………………………..
۹- بیان جنبه نوآوری تحقیق:
………………………….
…………………………….
۱۰- روش شناسی تحقیق:
الف: شرح كامل روش تحقیق بر حسب هدف، نوع داده ها و نحوه اجراء (شامل مواد، تجهيزات و استانداردهاي مورد استفاده در قالب مراحل اجرايي تحقيق به تفكيك):
………………………….
…………………………….
ب- متغيرهاي مورد بررسي در قالب یک مدل مفهومی و شرح چگونگی بررسی و اندازه گیری متغیرها:
…………………………………….
…………………………………..
ج – شرح کامل روش (ميداني، كتابخانهاي) و ابزار (مشاهده و آزمون، پرسشنامه، مصاحبه، فيشبرداري و غيره) گردآوري دادهها :
…………………………………….
…………………………………..
د – جامعه آماري، روش نمونهگيري و حجم نمونه (در صورت وجود و امکان):
…………………………………….
…………………………………..
ر- روش نمونه گیری و حجم نمونه:
…………………………………….
…………………………………..
ز- ابزار تحقیق:
…………………………………….
…………………………………..
هـ – روشها و ابزار تجزيه و تحليل دادهها:
…………………………………….
…………………………………..
منابع :
…………………………………….
…………………………………..
آسان داک: www.Asandoc.com
دانلود نمونه پروپوزال تکمیل شده، پروژه پر شده، طرح پیشنهادیه آماده